Inequalities for the H- and Flag H-vectors of Geometric Lattices

نویسنده

  • KATHRYN NYMAN
چکیده

We prove that the order complex of a geometric lattice has a convex ear decomposition. As a consequence, if ∆(L) is the order complex of a rank (r+1) geometric lattice L, then the for all i ≤ r/2 the h-vector of ∆(L) satisfies, hi−1 ≤ hi and hi ≤ hr−i. We also obtain several inequalities for the flag h-vector of ∆(L) by analyzing the weak Bruhat order of the symmetric group. As an application, we obtain a zonotopal cd-analogue of the Dowling-Wilson characterization of geometric lattices which minimize Whitney numbers of the second kind. In addition, we are able to give a combinatorial flag h-vector proof of hi−1 ≤ hi when i ≤ 2 7 (r + 5 2 ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Several Convex-Ear Decompositions

In this paper we give convex-ear decompositions for the order complexes of several classes of posets, namely supersolvable lattices with non-zero Möbius functions and rank-selected subposets of such lattices, rank-selected geometric lattices, and rank-selected face posets of shellable complexes which do not include the top rank. These decompositions give us many new inequalities for the h-vecto...

متن کامل

Convex-Ear Decompositions and the Flag h-Vector

We prove a theorem allowing us to find convex-ear decompositions for rankselected subposets of posets that are unions of Boolean sublattices in a coherent fashion. We then apply this theorem to geometric lattices and face posets of shellable complexes, obtaining new inequalities for their h-vectors. Finally, we use the latter decomposition to give a new interpretation to inequalities satisfied ...

متن کامل

The Weak Order and Flag h - Vector Inequalities May 2005

The following paper examines properties of the weak order on the groups Sr+1 and Br+1 as motivated by the search for a combinatorial proof of known h-vector inequalities. Several general results are developed with respect to descent set domination, and an explanation of the computer programs used to generate a number of these results is presented. While this paper primarily focuses on hand flag...

متن کامل

Linear Inequalities for Rank 3 Geometric Lattices

The flag Whitney numbers (also referred to as the flag f -numbers) of a geometric lattice count the number of chains of the lattice with elements having specified ranks. We give a collection of inequalities which imply all the linear inequalities satisfied by the flag Whitney numbers of rank 3 geometric lattices. We further describe the smallest closed convex set containing the flag Whitney num...

متن کامل

Poset Convex-ear Decompositions and Applications to the Flag H-vector

Possibly the most fundamental combinatorial invariant associated to a finite simplicial complex is its f-vector, the integral sequence expressing the number of faces of the complex in each dimension. The h-vector of a complex is obtained by applying a simple invertible transformation to its f-vector, and thus the two contain the same information. Because some properties of the f-vector are easi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003